home *** CD-ROM | disk | FTP | other *** search
- /* poly/solve_cubic.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
- /* solve_cubic.c - finds the real roots of x^3 + a x^2 + b x + c = 0 */
-
- #include <config.h>
- #include <math.h>
- #include <gsl/gsl_math.h>
- #include <gsl/gsl_poly.h>
-
- #define SWAP(a,b) do { double tmp = b ; b = a ; a = tmp ; } while(0)
-
- int
- gsl_poly_solve_cubic (double a, double b, double c,
- double *x0, double *x1, double *x2)
- {
- double q = (a * a - 3 * b);
- double r = (2 * a * a * a - 9 * a * b + 27 * c);
-
- double Q = q / 9;
- double R = r / 54;
-
- double Q3 = Q * Q * Q;
- double R2 = R * R;
-
- double CR2 = 729 * r * r;
- double CQ3 = 2916 * q * q * q;
-
- if (R == 0 && Q == 0)
- {
- *x0 = - a / 3 ;
- *x1 = - a / 3 ;
- *x2 = - a / 3 ;
- return 3 ;
- }
- else if (CR2 == CQ3)
- {
- /* this test is actually R2 == Q3, written in a form suitable
- for exact computation with integers */
-
- /* Due to finite precision some double roots may be missed, and
- considered to be a pair of complex roots z = x +/- epsilon i
- close to the real axis. */
-
- double sqrtQ = sqrt (Q);
-
- if (R > 0)
- {
- *x0 = -2 * sqrtQ - a / 3;
- *x1 = sqrtQ - a / 3;
- *x2 = sqrtQ - a / 3;
- }
- else
- {
- *x0 = - sqrtQ - a / 3;
- *x1 = - sqrtQ - a / 3;
- *x2 = 2 * sqrtQ - a / 3;
- }
- return 3 ;
- }
- else if (CR2 < CQ3) /* equivalent to R2 < Q3 */
- {
- double sqrtQ = sqrt (Q);
- double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
- double theta = acos (R / sqrtQ3);
- double norm = -2 * sqrtQ;
- *x0 = norm * cos (theta / 3) - a / 3;
- *x1 = norm * cos ((theta + 2.0 * M_PI) / 3) - a / 3;
- *x2 = norm * cos ((theta - 2.0 * M_PI) / 3) - a / 3;
-
- /* Sort *x0, *x1, *x2 into increasing order */
-
- if (*x0 > *x1)
- SWAP(*x0, *x1) ;
-
- if (*x1 > *x2)
- {
- SWAP(*x1, *x2) ;
-
- if (*x0 > *x1)
- SWAP(*x0, *x1) ;
- }
-
- return 3;
- }
- else
- {
- double sgnR = (R >= 0 ? 1 : -1);
- double A = -sgnR * pow (fabs (R) + sqrt (R2 - Q3), 1.0/3.0);
- double B = Q / A ;
- *x0 = A + B - a / 3;
- return 1;
- }
- }
-